Weighted Lonesum Matrices and Their Generating Function

نویسندگان

  • Ken Kamano
  • Yasuo Ohno
  • Shuji Yamamoto
چکیده

A lonesum matrix is a (0, 1)-matrix uniquely determined by its column and row sums, and the sum of its all entries is called the “weight” of it. The generating function of numbers of weighted lonesum matrices of each weight is given. A certain explicit formula for the number of weighted lonesum matrices is also proved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Weighted Exponentiated Family of Distributions: Properties, Applications and Characterizations

In this paper a new method of introducing an additional parameter to a continuous distribution is proposed, which leads to a new class of distributions, called the weighted exponentiated family. A special sub-model is discussed. General expressions for some of the mathematical properties of this class such as the moments, quantile function, generating function and order statistics are derived;...

متن کامل

Generating Matrices for Weighted Sums of Second Order Linear Recurrences

In this paper, we give fourth order recurrences and generating matrices for the weighted sums of second order recurrences. We derive by matrix methods some new explicit formulas and combinatorial representations, and some relationships between the permanents of certain superdiagonal matrices and these sums.

متن کامل

Lower Bounds of Copson Type for Hausdorff Matrices on Weighted Sequence Spaces

Let = be a non-negative matrix. Denote by the supremum of those , satisfying the following inequality: where , , and also is increasing, non-negative sequence of real numbers. If we used instead of The purpose of this paper is to establish a Hardy type formula for , where is Hausdorff matrix and A similar result is also established for where In particular, we apply o...

متن کامل

On Weighted Partial Orderings on the Set of Rectangular Complex Matrices

In this paper, the relations between the weighted partial orderings on the set of rectangular complex matrices are first studied. Then, using the matrix function defined by Yang and Li [H. Yang and H.Y. LI, Weighted UDV ∗-decomposition and weighted spectral decomposition for rectangular matrices and their applications, Appl. Math. Comput. 198 (2008), pp. 150–162], some weighted partial ordering...

متن کامل

Operational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients

In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013